\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV(NEW) EXAMINATION - WINTER 2022

Subject Code:3140708

Date:16-12-2022
Subject Name:Discrete Mathematics
Time:10:30 AM TO 01:00 PM
Total Marks:70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Q. 1 (a)	A committee 5 persons, is to be formed from 6 men and 4 women. In how	$\mathbf{0 3}$
	many ways this can be done when (i) at least 2 women are included, (ii) at	
	most 2 women are included.	
(b)	If $A=\{4,5,7,8,10\}, B=\{4,5,9\}$ and $C=\{1,4,6,9\}$, then verify that	$\mathbf{0 4}$
	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.	
(c)	Define Functionally complete set of connectives, Principal Disjunctive	$\mathbf{0 7}$
	Normal Form (PDNF). Obtain PDNF for the expression	
	$\neg((p \wedge q) \vee(\neg p \wedge q) \vee(q \wedge r))$	

Q. 2 (a) Define Partial Order Relation. Illustrate with an example.

03
(b) Define one - one function. Show that the function $f: R \rightarrow R$, $f(x)=3 x-7$ is one - one and onto both. Also find its inverse.
(c) Solve the recurrengerelation $a_{n+2}-5 a_{n+1}+6 a_{n}=2$ with initial condition $a_{0}=1$ and a_{1} 夫ga using method of undetermined coefficients.

OR

(c) Use gengong function to solve a recurrence relation $a_{n}=3 a_{n-1}+2$ with $a_{0}=1$
Q. 3 (a) Define Partition of a Set. Let $A=\{1,2,3,4,5\}$ and $R=\{(1,2),(1,1),(2,1),(2,2),(3,3),(4,4),(5,5)\} \quad$ be \quad an equivalence relation on A. Determine the partition for R^{-1}, if it an equivalence relation.
(b) Draw Hasse Diagram for the lattice $\left(S_{30}, D\right)$ where S_{30} is the set of divisors of 30 and D is the relation divides.
(c) Show that the set S of all matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ where $a, b \in R$ is a field with respect to matrix addition and matrix multiplication.

OR
Q. 3 (a) Define Semi Group, Monoid. Give an example of an algebraic structure which is semi group but not monoid.
(b) Consider the a relation R defined on $A=\{1,2,3\}$ whose matrix representation is given below. Determine its inverse R^{-1} and complement R^{\prime}.
$M_{R}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(c) Define free variable and bound variable.

Rewrite the following argument using quantifiers, variables and predicate symbols. Prove the validity of the argument.
"All healthy people eat an apple a day.
Ram does not eat apple a day.
Ram is not a healthy person."
Q. 4 (a) Define Abelian group and prove that the set $\{0,1,2,3,4\}$ is a finite abelian group under addition modulo 5 as binary operation.
(b) Define even permutation. Show that the permutation $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3\end{array}\right)$ is odd and $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1\end{array}\right)$ is eyen.
(c) Define Principal Ideal. Find all the principal Ideal of the ring $\left[\{0,1,2,3,4,5\},+_{6}, \times_{6}\right]$.

OR
Q. 4 (a) Define cut vertex. List out all the cut vertices of the graph given in Figure 1.
(b) Define adjacency matrix and path matrix of a graph. Find out adjacency matrix for the graph ofven in Figure 1.
(c) Define the terms Mhinple Graph, Multi - Graph, Weighted Graph, Degree of a vertex, in angree and degree of a vertex. Illustrate each with an example.
Q. 5 (a) State Jayrange's theorem and find out all possible subgroups of group $[\{1,-1, i,-i\}, \times]$.
(b) Define Eulerian graph, Planar Graph.

Justify whether the graph given in Figure 1 is Planer or not using Euler's formula.
(c) Define Binary tree, Spanning tree, Minimal Spanning tree, Find the minimal spanning tree for the weighted graph given in Figure 2.

OR

Q. 5 (a) Define Cyclic group, Normal subgroup. Illustrate with an example. 03
(b) Form a binary search tree for the data $16,24,7,5,8,20,40,3$.

04
(c) Explain Post order traversal. Given the postorder and inorder traversal of a binary tree, draw the unique binary tree.
Postorder: decfbhiga
Inorder: dcebfahgi .

